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The regularity of a noisy system can modulate in various ways. It is well known that coupling in a
population can lower the variability of the entire network; the collective activity is more regular. Here, we show
that diffusive �reciprocal� coupling of two simple Ornstein-Uhlenbeck �O-U� processes can regularize the
individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells
is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies
also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity
is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula
assuming weak noise and coupling for the variance of the period �i.e., spike times� that accurately captures this
effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional
oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Cou-
pling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the
role of connectivity with noisy oscillators and the modulation of variability of individual oscillators.
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I. INTRODUCTION

The underlying dynamics of how stochastic cellular net-
works behave in the presence of stimuli are complicated. For
example, in neural networks signals are transmitted with
high fidelity in the presence of many stochastic forces �1�.
How is this achieved? The variability of activity and its
modulation is studied here to gain a better understanding of
network dynamics.

It is known that inhibitory synaptic coupling can decrease
the variance of the spike times of a population of neurons,
and increase the signal-to-noise ratio �2,3�. Reduction in
spike time variability of a large population of oscillators
�integrate-and-fire model� has been observed with excitatory
coupling �4� and with state dependent �multiplicative� noise
�5�. Coupling in populations of pancreatic beta cells �6� and
cardiac cells �7� leads to regular activity even though the
individual cells behave stochastically. The large network that
produces regular circadian rhythms consists of individual
molecular processes �formation/binding of proteins, tran-
scription of genes, etc.� that are stochastic �8�. However, in
all of these studies, a decrease in individual cell �oscillator�
variability due to coupling was not studied, but rather only
the variability of the network. A small number of cells can
drive most of the network activity in various biological sys-
tems. This is known, for example, in the thalamus �9�, the
heart �10�, and in central pattern generators for respiration
and locomotion �11�. Also, very few neurons encode sensory
stimuli in rat somatosensory cortex �12� and in auditory
sounds �13�. Hence, regularity at the individual level may
have important consequences in cellular networks.

We first explore the effect of coupling on the regularity of
a simple linear system of diffusively coupled Ornstein-
Uhlenbeck �O-U� processes. A straight forward calculation

shows that reciprocal coupling results in more regular behav-
ior. Also, coupling to noisier units can surprisingly lower the
variability of both �the less noisier and noisier process�.
Next, we focus on coupled oscillators because they have
been effectively utilized by many scientists to describe phe-
nomena in diverse fields ranging from the physical to the
biological sciences �14–17�. Including the effects of noise
�thermal-dynamic, molecular biological processes, heteroge-
neity, etc.� to account for a larger class of systems has at-
tracted considerable attention �18�. We find the results for the
O-U processes hold for nonlinear noisy oscillators as well.
However, with noisy oscillators, the reduction in variability
is robust to many types of coupling. Thus, coupling in noisy
oscillators is beneficial when regularity is required.

In the context of coupled noisy oscillators, the full prob-
ability density of the random period is difficult to compute
analytically and numerically. Thus, we derive an asymptotic
approximation assuming weak noise and weak coupling that
captures the observed phenomena. Also, we find the results
hold for networks of higher dimensional systems such as
Morris-Lecar cells and Brusselators.

II. DIFFUSIVELY COUPLED ORNSTEIN-UHLENBECK
PROCESSES

Consider a system of N diffusively coupled O-U pro-
cesses with 0 mean ��Xj�=0�,

Ẋj = − Xj + � j� j�t� +
K

N − 1�
i

�Xi − Xj� , �1�

for j=1, . . . ,N, � j�t� are independent white noise processes:
�� j�t��=0, �� j�t��i�t��=�ij��t− t��, where �ij =1 if i= j and 0 if
i� j. As the coupling strength K�0 increases, the Xj�t�’s
become more synchronous. For N�1, its not surprising that
the �steady-state� variance of the individual processes, X1
without loss of generality, decreases with coupling. Briefly,
this can be understood by defining Yª

1
N� j=1

N Xj, which
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evolves according to: Ẏ =−Y + �̄��t�, where �̄= 1
N
�� j=1

N � j
2.

The steady-state density of Y is a Gaussian with 0 mean and
variance �̄2. The equation for X1 is can be rewritten as:

Ẋ1=−X1+�1�1�t�+ KN
N−1 �Y −X1�. Intuitively, larger K synchro-

nizes X1 with Y, which has smaller variance for large N,
leading to a decrease in variance of X1. This argument de-
pends on N→�; we show that this also holds for small N
even if the noise amplitudes greatly differ. Consider N=2. In
this case, the joint steady-state density is a multivariate
Gaussian and can be calculated analytically via the steady-
state Fokker-Planck equation; this involves algebraic equa-
tions for the coefficients. We do not report the calculations
but only give the results. The variance of X1 is

var�X1� =
1

4

K2��1
2 + �2

2� + �1
2�4K + 2�

2K2 + 3K + 1
. �2�

If �1��2�0, one can verify that var�X1� decreases mono-
tonically for all K�0; coupling to less noisier X2 only regu-
larizes X1 �compared to uncoupled�, which is not surprising.
For 0	�1	�2, a straight forward calculation gives

K�=
�2

2−3�1
2−��2

2−�1
2

5�1
2−3�2

2 as the critical coupling value. We see that

coupling regularizes X1 for all K�0 as long as �1
2�

3
5�2

2.
Thus, coupling with a �possibly� noisier X2 regularizes X1 as
long as �2 is not too big. If �1

2	
3
5�2

2 and the numerator of K�

is negative, then coupling decreases var�X1� until K�, after

which var�X1� will increase. As K→�, var�X1�→ 1
4

�1
2+�2

2

2 .
These results are highlighted in Fig. 1. If �2��1, coupling
leads to an increase in var�X1���1

2 �not shown�. As
�2

�1
→�,

K� approaches a negative value; thus, all K�0 leads an in-
crease in var�X1�. This can be achieved for finite

�2

�1
. Of

course, if the coupling is not diffusive �e.g., K	0�, var�X1�
can dramatically increase.

III. NOISY OSCILLATOR MODEL

In the same vein as the O-U processes, we study the vari-
ability of coupled nonlinear noisy oscillators. We outline a
phase reduction technique of high dimensional noisy oscilla-

tors to obtain a simple yet general model that captures the
qualitative dynamics. The reduced model �Eqs. �8� and �9�
below� are also amenable to analysis.

Consider two identically coupled noisy oscillators of the
form

Ẋ1 = F�X1� + K̃G�X1,X2� + �̃1
1�t� , �3�

Ẋ2 = F�X2� + K̃G�X2,X1� + �̃2
2�t� , �4�

where Xj �Rn, 
 j is an n vector of independent �component-
wise� white noise processes. In the absence of noise

��̃ j =0� and coupling �K̃=0�, the system Ẋj =F�Xj� has an
asymptotically stable limit cycle X0�t�=X0�t+��, with period
�. The statistics of the random times T that it takes for the
oscillators to complete a cycle with noise and coupling is the
central focus. In neural models, these are the spike times, i.e.,
when voltage variable reaches its maximum. Concrete ex-
amples of Eqs. �3� and �4� will be studied in Sec. V.

We assume Eqs. �3� and �4� are stochastic differential
equations of the Itô type, so that care must be taken when
changing variables. Assume Xj is only reciprocally coupled
to Xi. There is a function � :Rn→S1 mapping a neighbor-
hood of the limit cycle to the phase on a circle, � �0,��.
Defining  j =��Xj�, we see that  j satisfies:

d j

dt
= 1 + �X��Xj� · �K̃G�Xj,Xi� + �̃ j
 j�t�� . �5�

This equation is exact, but not useful since we do not know
Xj or Xi. Assuming small perturbations, we can approximate
Xj by X0� j� �the limit cycle� to obtain an equation for  j,

̇ j 	 1 + K̃Z� j� · G�X0� j�,X0�i�� + �̃ jZ� j� · 
 j�t� , �6�

where Z��ª�X��X0���. The function, Z�� is called the
adjoint and satisfies the linear equation

Z��� = − DXF�X0���TZ�� . �7�

The method of averaging is applied to the coupling term, so
that it can be replaced by the coupling function
H�i− j�= 1

� 
0
�Z�t� ·G�X0�t� ,X0�t+ �i− j���dt �see Kuramoto
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�14��. If coupling and noise only occurs in the first variable,
which is often the case with many oscillators, then the com-
ponents of the G and 
 j�t� are zero except for the first com-
ponent. In Z��, we call the first component ���. ��� is
proportional to the phase resetting curve or PRC of the neu-
ron or oscillator, a quantity which is experimentally measur-
able. Assume the period is 1 without loss of generality. It is
important to note that with a white noise process 
 j�t�, the
mapping to  j requires additional care. We can consider 
 j�t�
as a limit of smooth functions and pass to appropriate limits
after the mapping. This can be rigorously justified �19,20�.
To obtain an SDE in the Itô sense, we use Itô lemma. The
result is

̇1 = 1 + KH�2 − 1� +
�1

2

2
���1���1� + �1��1��1�t� ,

�8�

̇2 = 1 + KH�1 − 2� +
�2

2

2
���2���2� + �2��2��2�t� ,

�9�

where ��� is the infinitesimal phase-resetting curve �PRC�,
H is the coupling function,  j � �0,1� is the phase that resets
to 0 when equal to 1, and � j�t� are independent white noise
processes: �� j�t��=0, �� j�t��i�t��=�ij��t− t��, where �ij =1 if
i= j and 0 if i� j. A detailed discussion of the phase reduc-
tion of noisy oscillators can be found in �21�.

Recall that we are interested in the statistics of the period
T rather than the phase of the oscillator in contrast to the
O-U processes in the last section. Monte Carlo simulations
were performed to study the variability of the period, var�T�,
as coupling K varies. We considered the two canonical type-I
���=1−cos�2��� and type-II ���=−sin�2��� PRCs �22�,
set �1=�2, and considered various coupling functions:
H=−sin�2��� antiphase coupling �for 1, Eq. �8��,
H=sin�2��� synchronous coupling, and H=−sin�4���
�where �= 1

4 , 3
4 are the stable phase differences in the absence

of noise�. Simulations show that coupling always decreases
var�T� of 1 compared to K=0 �Fig. 2�, independent of the
coupling function. The magnitudes of var�T� seem small, but
note that the phase model is in normalized units and pertur-
bations are small. The reduction in variability is appreciable
in full oscillator models �Sec. V�. To analyze this behavior,
we derive an asymptotic theory for var�T� assuming weak
noise and weak coupling �calculations in Appendix A�.

IV. ASYMPTOTIC THEORY FOR STATISTICS OF THE
PERIOD OF A PHASE MODEL

The full probability density function of the random cross-
ing times 1�T�=1 cannot be obtained analytically, and is
difficult to compute numerically via the Fokker-Planck equa-
tion �23�. even in this simplified model �see Appendix B�.
We thus characterize T by its mean �T� and variance var�T�.
In order to better understand the observed phenomena, we
rely on asymptotic methods to obtain an approximate for-
mula for var�T� assuming �=O��� and K=O���. Detailed

calculations are given in Appendix A. The formula is �cf.
Eqs. �A33�–�A38��,

var�T� = c1��1�2 + c2��1�2K + c3��1K�2 + c4��2K�2 + c5��1�4

+ O��5� , �10�

where the coefficients cj of each depend on �, H, and the
steady-state distribution of the phase difference �=2−1
�mod 1�, which we denote by p���.

In general, Eq. �10� has to be computed numerically, but it
is straight forward to do so. For the canonical �’s, we see
that the lowest order coupling term c2��1�2K has a coefficient
that is negative for a large class of coupling functions, con-
sistent with the observed decrease in variance. The coeffi-
cient c2 is proportional to

− 
0

1

�H���� + 3H����p���d�

for both ��=−sin�2�� and ��=1−cos�2��. This term is
negative because the stable states determined by H �i.e.,
stable in the absence of noise� has positive H���0� values
with p��0� sharply peaked; at the unstable states, H�	0
where the p values are small �Fig. 3�a�-i with antiphase cou-
pling and ��; Fig. 3�a�-ii with synchronous coupling and
���. From the figure, we see that the term 3H��� slightly
shifts the peak where H���0� is maximal i.e., H� has larger
magnitude than 3H �gray curve�. Integrating against the den-
sity of phase differences, p��� �black curve�, weights the
positive peaks of H�+3H more favorably than the negative
troughs, resulting in a decrease of var�T� with 0	K�1.
This explanation is applicable to many coupling functions H
in the asymptotic regime.

The asymptotic theory �Eq. �10�� is compared with
Monte Carlo simulations for the two PRCs ��=−sin�2��
�Fig. 3�b�-i� and ��=1−cos�2�� �Fig. 3�b�-ii� with equal
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noise �1=�2=�. The two coupling functions are antiphase:
H=−sin�2��� �Fig. 3�b�-i� and synchronous H=sin�2���
�Fig. 3�b�-ii�. The Monte Carlo simulations are the same
curves in Fig. 2 in the top two panels. From the asymptotic
theory, both the first order in K�c3=c4=0� and the second
order in K curves are plotted. The asymptotic theory deviates
from the Monte Carlo simulations when noise is relatively
large �=0.15 �top curves�, but is accurate for small noise
��=0.1, and �=0.075� and coupling values. As expected, the
second order theory �dashed-gray� matches better than the
first order theory �thin-gray� with small parameters. Notice
the first order theory does not depend on �2. The first order
theory and Monte Carlo simulations are monotonic in K. The
second order theory is not monotonic �cf. O-U systems for
large � in Fig. 1�, and matches the Monte Carlo simulations
better over a larger range of K.

We now consider different noise values where �1 is not
necessarily equal to �2 in the phase models �8� and �9�. If
�1=0 and �2�0, then coupling naturally increases var�T� of
1. Since coupling decreases var�T� when �1=�2, by conti-
nuity we expect there to be a range of 0	�1	�2 where
var�T� will still decrease. That is, coupling to a noisier oscil-
lator will still decrease the variability, similar to the diffu-
sively coupled O-U processes analyzed above. The differ-
ence here is that we expect this effect to be robust to
different types of coupling. This is indeed what is observed

in the Monte Carlo simulations �Fig. 4�. Formula �10� is not
as simple as it appears because coefficients must be deter-
mined numerically and they depend in part on the noise and
coupling parameters. Thus, it is difficult to make analytic
predictions for how disparate the noise levels can be to have
coupling decrease variability �cf. O-U processes�. Neverthe-
less, the Monte Carlo simulations and the second order
asymptotic theory match quite well �Fig. 4� for the same
coupling and PRC in Fig. 3. The first order asymptotic theory
�c3=c4=0� does not depend on �2 and is not informative
since the variance only decreases in K �thus, it is not plotted
in Fig. 4�. In Fig. 4, �2 is fixed at 0.1, and �1 varies between
0 to 0.1. There is a range of 0	�1	�2 values where cou-
pling to a noisier oscillator still decreases variability �e.g.,
�1=0.08�, independent of coupling. The second order
asymptotic theory captures these results. The variance of a
noisy oscillator similarly decreases when coupled to less
noisier oscillator �not shown�.

V. REDUCTION IN VARIANCE VIA COUPLING IN FULL
OSCILLATOR MODELS

The Morris-Lecar model �24� of giant barnacle muscle
behaves as a neural oscillator with large enough input current
�Fig. 5�a� shows limit cycle; see Appendix C1 for equations�.
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The density of spike times of an uncoupled noisy cell is
plotted in Fig. 5�b� �black�. When two Morris-Lecar cells are
electrically coupled, the variance of the spike times de-
creases �Fig. 5�b��. Notice the interspike-interval �ISI� den-
sity becomes narrower �gray and dashed-black� as the cou-

pling strength �K̃=gp here� increases. Simulations show that
var�T� decreases as coupling increases �Fig. 5�c�, top panel�

as one would expect from the previous analysis of the re-
duced phase models. A commonly used dimensionless mea-
sure of the variability of T is the coefficient of variation
�CV�, which is equal to the standard deviation divided by the
mean CV=�var�T� / �T�. For example, a Poisson process has
mean equal to its standard deviation giving a CV=1, which
is highly variable. We see that the CV also decreases with
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coupling strength and has a similar shape as the var�T� curve
�Fig. 5�c�, bottom panel�—this is not surprising because the
perturbations are small and the mean �T� does not vary
much. The CV measure shows the variability is not unrea-
sonably small in light of the small magnitudes of var�T� in
the phase models. The variability is not necessarily mono-
tonic in gp, however, it is evident that any reasonable cou-
pling value regularizes the spike times compared to the un-
coupled case. The gp values in these regimes result in
synchronous behavior, which is a well-known effect of elec-
trical coupling in biological cells.

By the same argument as before, for �̃2�0, we expect a
range of �̃1	�̃2 where coupling decreases var�T� of the less
noisier oscillator. This is illustrated in Fig. 5�d� shows how
coupling to a noisier oscillator can decrease the variability.

Here �̃2=10 �A ms
cm2 is fixed and �̃1 varies from 0 to 10 �A ms

cm2 .
When �̃1=0 and 3 �A ms

cm2 , the two bottom curves shows how
coupling increases the variability of oscillator 1. For inter-
mediate values of �̃1 �6 and 8 �A ms

cm2 �, coupling to the noisier
oscillator 2 will decrease the variability. For reference, the
curve from Fig. 5�c� where the two oscillators have the same
noise value �10 �A ms

cm2 � is plotted in gray. Note that var�T� of
the second oscillator also decreases with coupling, even
when reciprocally coupled to a less noisier oscillator �not
shown�. Therefore, this high dimensional system behaves as
one would expect given the above results in the reduced
phase models.

Next, we consider inhibitory synaptic coupling between
the Morris-Lecar cells. The parameters are chosen so that in
the absence of noise, the oscillators settle to an antiphase
state. Figure 6 shows the synaptic coupling strength gs can
reduce the variability of the spike times, as long as the noise
and coupling strengths are small enough �see Appendix C 2
for equations�. The values of gs appear small, but the effec-
tive inhibitory current is still significant because it has the
form: gssj�vi��v j −�s� �i.e., �v j −�s� can be �100 mV�. No-
tice again, the CV is similar to var�T� because mean period
does not change much in the asymptotic regime. If the in-
hibitory synaptic coupling is too strong, var�T� can increase
compared to when it is uncoupled. In that case, �T� increases
and the asymptotic theory �and phase model approximation�
are no longer valid.

To test if the results hold in a larger network, we study the
statistics of a single Morris-Lecar cell reciprocally coupled to
four other Morris-Lecar cells �Fig. 7�. The other four cells
are not coupled to each other. To properly compare the gap
junction strength gp with Fig. 5, we scale each gp to 1

4gp.
From Fig. 7�a�, we see that coupling still reduces variability
in this network when the noise levels of all the cells are the
same. Moreover, if the other four cells are noisier than the
first Morris-Lecar cell, coupling will still lower the variabil-
ity of its spike times of the less noisier oscillator �Fig. 7�b��.

The Brusselator model �25� of oscillating chemical reac-
tions with noise shows the same reduction in variability with
diffusive coupling. We focus on two Brusselators, each con-

ML1 ML2
gs

gs(mS/cm )2
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FIG. 6. Morris-Lecar cells coupled via inhibitory synapses. In
this absence of noise, the two cells settle to an antiphase state.
Synaptic coupling regularizes the spike times of the individual cells.
The effect is not dramatic because the noise and coupling param-
eters have to be quite small for there to be a well-defined phase on
the limit cycle. The noise levels are equal and dotted black lines are

var�T� for K̃=0.
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FIG. 7. Coupling reduces variability in a network of Morris-Lecar oscillators. Since ML1 is coupled to four other MLs, each gp is scaled
to 1

4gp for comparison to Fig. 5. �a� var�T� of a single ML decreases with nonzero gp. The noise values of each oscillator are the same, with
the legend used in Fig. 5�c�. �b� The noise of the first ML �7 �A ms

cm2 � is less than the other four MLs �10 �A ms
cm2 �, yet coupling still decreases

the variance of it’s spike times.
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sisting of two chemical concentrations �xj ,yj�, j=1,2,
xj �0, yj �0, that oscillate in the absence of coupling and
noise. Assume the yj’s cannot react to each other, the xj’s are
diffusively coupled, and they receive random noise perturba-
tions via some background solution.

ẋ1 = a − �b + 1�x1 + x1
2y1 − K̃�x1 − x2� + �̃1�1�t� ,

ẏ1 = bx1 − x1
2y1,

ẋ2 = a − �b + 1�x2 + x2
2y2 − K̃�x2 − x1� + �̃2�2�t� ,

ẏ2 = bx2 − x2
2y2. �11�

The parameter values are chosen so that there is a stable limit
cycle in the absence of noise and coupling: b�1+a2. Here,
we choose a=1 and b=3.

We choose a point of high concentration in y and low
concentration in x as the starting point of the limit cycle �Fig.
8�a�, gray star�. The decrease in variability of the period with
diffusive coupling is not as impressive as with the Morris-
Lecar model, but is still evident �Fig. 8�b�, with same noise
�̃1= �̃2= �̃�. Recall that the variables here are normalized.
The noise and coupling parameters are quite small because it
does not need a sizable perturbation to deviate far off the
limit cycle. Once again, we see range of �̃1	�̃2=0.06 where
coupling to a noisier oscillator decreases the variability of
the period of the first Brusselator �Fig. 8�c� for
�̃1=0.045,0.055�.

VI. DISCUSSION

Many who have studied noisy oscillators have focused on
the synchronization properties �18�. Coupling in noisy sys-
tems is known to dramatically alter the synchronization
properties �18,26�. Also, recent work by Vasseur and Fox
�27� suggests that within noisy population dynamics, cou-
pling plays an important role in enabling synchronous behav-
ior in predator-prey systems. We focus on the variability be-
cause it is also an important attribute of a system.

Although noise in oscillatory systems can have beneficial
consequences �28�, it can lead to irregular behavior that is
detrimental if precision is required. We have shown that cou-
pling in noisy systems �i.e., diffusively coupled Ornstein-
Uhlenbeck processes and nonlinear noisy oscillators� can de-
crease the variability of the individual units. It is known that
population activity can be regularized with coupling
�2,6–8,17�, often with a reduction in variance proportional to
1 /N or better �3,4� for large N where N is the population
size. A priori, it is not obvious why various types of recip-
rocal coupling with other noisy, possibly noisier, oscillators
reduces the variability of a single oscillator. The same
coupling-induced regularity is also observed in higher di-
mensional realistic oscillator models �Morris-Lecar and
Brusselator� and in a network setting. We derive an
asymptotic theory that captures this phenomenon.

There are parameter regimes in the full systems where
coupling can increase the variability of the spike times. In
the Morris-Lecar cells with inhibitory synaptic coupling, the

oscillator can be held at an inactive state for significant pe-
riods of time, increasing the variance compared to the un-
coupled system, and increasing the mean time between
spikes. This regime is not well approximated by the phase
models �8� and �9�. However, if the coupling and noise pa-
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FIG. 8. Brusselator model of oscillating chemical concentra-

tions. �a� Phase plane of concentrations �x1 ,y1� with K̃=0.02,
�̃=0.05 for both Brusselators. �b� Variance of period with different

coupling strengths K̃ for �̃1= �̃2= �̃. Diffusive coupling regularizes

the period of each cycle �dotted black line var�T� for K̃=0�. �c�
Fixed �̃2=0.06, variance of period of first Brusselator with different
coupling strengths, varying �̃1 between 0 and 0.06. Again, coupling
can reduce the variability of the first Brusselator even though it is
coupled to a noisier oscillator ��̃1=0.045,0.055�. The gray curve
�̃1=0.06 is the top curve in �b� �dashed-black�.
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rameters are small enough, inhibitory synaptic coupling can
slightly regularize the spike times �Fig. 6�. Our results hold
for general oscillators that are well approximated by the
phase models �8� and �9�.

The effect of coupling on the regularity of individual os-
cillators has been addressed briefly �Chapter 9.2.4 in Pik-
ovsky et al. �17�� in the specific case where two reciprocally
coupled oscillators are synchronized, i.e., the phase differ-
ence �→0. Our results are more general than this special
limit. In electric fish, reliability across trials of a single neu-
ron was observed by Chacron and co-workers �29�. The trial
to trial reliability crucially depended on the entire network
being active �i.e., some form of coupling to the single neu-
ron�. This is an example of coupling-induced reliability of an
individual neuron from trial to trial. This is similar in spirit to
our theoretical results, but we show the variability in a single
trial is reduced via coupling �for noisy oscillators�.

From our results we can make testable experimental pre-
dictions in neuroscience. If the interspike-interval �ISI� sta-
tistics of a particular uncoupled oscillating neuron are
known, then we predict the same type of neuron that is
weakly coupled in a network will have more regular ISI.
This can be tested in in vitro slice preparation. These predic-
tions rely on our specific framework where the coupling and
noise strengths are small, and the neurons are repetitively
firing action potentials of similar frequencies.
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APPENDIX A: CALCULATION OF ASYMPTOTIC var(T)
OF PHASE MODEL

The random trajectory of the two oscillators  j�t� is given
by the �Itô� integral equations,

1�t� = t + �1
0

t

��1�s���1�s�ds + K
0

t

H�2�s� − 1�s��

+
�1

2

2


0

t

��1�s�����1�s��ds , �A1�

2�t� = t + � + �2
0

t

��2�s���2�s�ds

+ K
0

t

H�1�s� − 2�s��ds

+
�2

2

2


0

t

��2�s�����2�s��ds , �A2�

where we have assumed initial conditions 1�0�=0, and
2�0�=�� �0,1� without loss of generality. By periodicity,
this is equivalent to having initial phase difference of
�� �0,1� �mod 1�, where � is a random variable with distri-
bution equal to the steady-state density of the phase differ-
ence p���. The initial condition does not affect the evolution
of the trajectories, so we can proceed with our analysis as-
suming � is fixed. After which, we must average over initial
conditions. That is, take the expectation of the resulting for-
mulas over �, i.e., replace g��� with 
0

1g���p���d�.
Assume the noise strengths � j and coupling strength K are

small. For notational convenience, let � j�s�ds=dWj�s�. Ex-
panding in powers of �1, �2, and K, the second term in Eq.
�A1�, �1
0

t ��1�s���1�s�ds=

�1
0

t

��s�dW1�s� + ��1�2
0

t

���s��
0

s

��r�dW1�r��dW1�s�

+ �1KH���
0

t

s���s�dW1�s� + h . o . t . �A3�

where h.o.t. stands for higher order terms. The third term in
Eq. �A1� is K
0

t H�2�s�−1�s��ds=

KH���t + K2H�����H�− �� − H����
t2

2

+ �2KH����
0

t �
0

s

��r + ��dW2�r��ds

− �1KH����
0

t �
0

s

��r�dW1�r��ds + h . o . t .

�A4�

and the last term in Eq. �A1�,
�1

2

2 
0
t ��1�s�����1�s��ds, is

simply

�1
2

2

�2�t�
2

+ h . o . t . �A5�

Let us define

h0 ª H��� , �A6�

hp ª H���� , �A7�

h̄ ª H�− �� − H��� . �A8�

To second order, the random trajectory of 1�t� can be writ-
ten using Eqs. �A3�–�A5� and Eqs. �A6�–�A8�. With random
initial condition 2�0�−1�0�=�, we have
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1�t� = t + �1
0

t

��s�dW1�s� + Kh0t + ��1�2�
0

t

���s��
0

s

��r�dW1�r��dW1�s� +
�2�t�

4 � + K2hph̄
t2

2

+ �1K�h0
0

t

s���s�dW1�s� − hp
0

t �
0

s

��r�dW1�r��ds� + �2Khp
0

t �
0

s

��r + ��dW2�r��ds + h . o . t . �A9�

1�t� = t + �1Z1�t� + KZ2�t� + ��1�2Z3�t� + K2Z4�t� + �1KZ5�t�

+ �2KZ6�t� + h . o . t . �A10�

Note that the functions Zj�t� are defined as the coefficients of
the asymptotic expansion in Eq. �A9�. We also expand the
random period T in powers of � j and K.

T = 1 + �1T1 + KT2 + ��1�2T3 + K2T4 + �1KT5 + �2KT6

+ h . o . t .

Substitute t=T into Eq. �A10� and expand the coefficients Zj
as well, keeping in mind 1�T�=1 by definition. The result is

0 = �1T1 + �1�Z1�1� + Z1��1���1T1 + KT2�� + KT2

+ K�Z2�1� + Z2��1���1T1 + KT2�� + ��1�2T3 + ��1�2Z3�1�

+ K2T4 + K2Z4�1� + �1KT5 + �1KZ5�1� + �2K�T6 + Z6�1��

+ h . o . t .

Combining like terms, we solve for Tj by making the coef-
ficients of noise and coupling vanish, term by term

T1 = − Z1�1� ,

T2 = − Z2�1� ,

T3 = − Z3�1� − Z1��1�T1,

T4 = − Z4�1� − Z2��1�T2,

T5 = − Z5�1� − Z1��1�T2 − Z2��1�T1,

T6 = − Z6�1� .

The expanded expressions for Tj are

T1 = − 
0

1

��s�dW1�s� , �A11�

T2 = − h0, �A12�

T3 = − 
0

1

���s��
0

s

��r�dW1�r��dW1�s� , �A13�

T4 = − hp
h̄

2
+ h0

2, �A14�

T5 = hp
0

1 �
0

s

��r�dW1�r��ds

+ h0
0

1

���s� − s���s��dW1�s� , �A15�

T6 = − hp
0

1 �
0

s

��r + ��dW2�r��ds . �A16�

We can now compute the statistics of

T = 1 + �1T1 + KT2 + ��1�2T3 + K2T4 + �1KT5 + �2KT6

to second order. The mean of T is

�T� = 1 − Kh0 + K2�− hp
h̄

2
+ h0

2� . �A17�

Note that �T3�=−
0
1���s���s�ds=
0

1���s���s�ds=0. The
variance of T, var�T�= ��T− �T��2�, is

var�T� = ���1T1 + ��1�2T3 + �1KT5 + �2KT6�2� .

�A18�

Many of the terms vanish in the var�T� calculation because
the noise in 1 and 2 are independent �dW1 ·dW2�=0, and
odd powers of noise have expectation
0:� j

2k+1�dWj ·dWj . . .dWj�=0. We simplify Eq. �A18� to

var�T� = ��1�2�T1
2� + 2��1�2K�T1T5� + ��1K�2�T5

2�

+ ��2K�2�T6
2� + ��1�4�T3

2� . �A19�

The covariances of Tj of interest are

�T1
2� = 

0

1

�2�s�ds , �A20�

�T1T5� = − hp
0

1

�1 − s��2�s�ds + h0
0

1

s���s���s� − �2�s�ds ,

�A21�

�T5
2� = �hp�2�

0

1 
0

s 
0

s�
�2�r�drds�ds

+ 
0

1

�1 − s�
0

s

�2�r�drds�
+ 2h0hp

0

1

�1 − s��2�s� − �1 − s�s��s����s�ds
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+ �h0�2�
0

1

�2�s� − 2s��s����s� + s2����s��2ds�
�A22�

�T6
2� = hp

2�
0

1 
0

s 
0

s�
�2�r + ��drds�ds

+ 
0

1

�1 − s�
0

s

�2�r + ��drds� , �A23�

�T3
2� =

1

2


0

1

����s��2
0

s

�2�r�drds . �A24�

For convenience, let us define

L0 = 
0

1

�2�s�ds , �A25�

L1 = 
0

1

s�2�s�ds , �A26�

L2 = 
0

1

s2�2�s�ds . �A27�

The terms above can be partially simplified by integrating by
parts


0

1

s��s����s�ds = −
1

2
L0,


0

1

s2��s����s�ds = − L1.

In terms of the L’s, we have

�T1
2� = L0, �A28�

�T1T5� = − hp�L0 − L1� −
3

2
h0L0, �A29�

�T5
2� = �hp�2�

0

1 
0

s 
0

s�
�2�r�drds�ds

+ 
0

1

�1 − s�
0

s

�2�r�drds� + h0hp�3L0 − 4L1�

+ �h0�2�2L0 + 
0

1

s2����s��2ds� , �A30�

�T6
2� = hp

2�
0

1 
0

s 
0

s�
�2�r + ��drds�ds

+ 
0

1

�1 − s�
0

s

�2�r + ��drds� , �A31�

�T3
2� =

1

2


0

1

����s��2
0

s

�2�r�drds . �A32�

These terms can be calculated for a specific � �see Table I�.
For type II ��=−sin�2���, the values are �recall Eqs. �A6�
and �A7��,

TABLE I. Various definite integral values �see definitions in Eq. �A25��. For canonical type II ��=−sin�2�� and type I ��=1
−cos�2�� PRCs.

Definite Integral Type II �� Type I ��

L0
1

2

3

2
L1

1

4

3

4


0

1
0

s
0

s�
�2�r�drds�ds +

0

1

�1 − s�
0

s

�2�r�drds 1

6
−

1

16�2

1

2
−

15

16�2


0

1
0

s
0

s�
�2�r + ��drds�ds +

0

1

�1 − s�
0

s

�2�r + ��drds

1

6
−

1

16�2 +
cos2����

2�2 −
cos4����

2�2

−
sin�2���

4�
+

cos3����sin����
�

1

2
+

17

16�2 −
5 cos2����

2�2 +
cos4����

2�2

+
5 sin�2���

4�
−

cos3����sin����
�


0

1

s2����s��2ds 2

3
�2+

1

4

2

3
�2−

1

4

1

2
0

1

����s��2
0

s

�2�r�drds 1

4
�2 3

4
�2
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�T1
2� =

1

2
,

�T1T5� = −
1

4
�H���� + 3H���� ,

�T5
2� = �H�����2�1

6
−

1

16�2� +
1

2
H���H����

+ H���2�5

4
+

2

3
�2� ,

�T6
2� = �H�����2�1

6
+ . . . �see Table I, fourth row�� ,

�T3
2� =

1

4
�2,

and for type I ��=1−cos�2���,

�T1
2� =

3

2
,

�T1T5� = −
3

4
�H���� + 3H���� ,

�T5
2� = �H�����2�1

2
−

15

16�2� +
3

2
H���H����

+ H���2�11

4
+

2

3
�2� ,

�T6
2� = �H�����2�1

2
+ . . . �see Table I,fourth row�� ,

�T3
2� =

3

4
�2.

These coefficients are then averaged over initial conditions:

0

1�TiTj�p���d� to complete the formula for var�T� in Eq.
�A19�,

var�T� = c1��1�2 + c2��1�2K + c3��1K�2 + c4��2K�2 + c5��1�2,

�A33�

c1 = �T1
2� , �A34�

c2 = 2
0

1

�T1T5�p���d� , �A35�

c3 = 
0

1

�T5
2�p���d� , �A36�

c4 = 
0

1

�T6
2�p���d� , �A37�

c5 = �T3
2� . �A38�

APPENDIX B: STATISTICAL QUANTITIES OF PHASE
MODEL VIA THE FOKKER-PLANCK EQUATION

Statistical quantities of event times �e.g., spikes� can be
computed via a modification of the Fokker-Planck equation
�23�. Although there are other methods to obtain these statis-
tical quantities �see Touboul and Faugeras �30� for some
techniques�, they generally require nontrivial numerical
methods when the system is high dimensional. We focus on
how to obtain these quantities via the Fokker-Planck equa-
tion.

Recall the Itô SDEs for the reduced phase model �8� and
�9�,

̇1 = 1 + KH�2 − 1� +
�1

2

2
��1����1� + �1��1��1�t� ,

̇2 = 1 + KH�1 − 2� +
�2

2

2
��2����2� + �2��2��2�t� .

�B1�

The evolution equation for the two-dimensional �2D� prob-
ability density ��1 ,2 , t� is governed by a Fokker-Planck
equation �23�,

��

�t
= −

�

�1
��1 + KH�2 − 1� +

�1
2

2
��1����1����

+
�1

2

2

�2

�1
2 ��2�1���

−
�

�2
��1 + KH�1 − 2� +

�2
2

2
��2����2����

+
�2

2

2

�2

�2
2 ��2�2��� + ��1�„�1 + KH�2 − 1����1,2,t�…

+ ��2�„�1 + KH�1 − 1����1,1,t�… . �B2�

Let us call the probability density for the random
times 1�T�=1 �with 1�0�=0� the ISI �interspike-interval�
density f�t�. The density f�t� can be obtained
with Eq. �B2� by removing the reset condition in
1 :��1�(�1+KH�2−1����1,2 , t�), make 1=1 an absorb-
ing boundary, and setting the initial condition to

��1,2,0� = ��1�c���1,2� ,

where �� is the steady-state density � ��
�t =0� of Eq. �B2�, and

c = �
0

1

���1,2�d2�−1

so that the initial probability mass is 1. The ISI density is the
flux across 1=1,
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f�t� = 
0

1

�1 + KH�2 − 1����1,2,t�d2. �B3�

See Cox, Lewis, Perkel and co-workers �31–33� for similar
equations for spike train statistics. We see limt→� f�t�=0 be-
cause of the absorbing boundary at 1=1, and 
0

�f�t�dt=1
because the total probability mass absorbed at 1=1 is equal
to the initial probability mass �i.e., 1�. From this, we can
obtain the ISI statistics: �T�=
0

�tf�t�dt and var�T�
=
0

�t2f�t�dt− �T�2. Solving for the ISI density f�t� numeri-
cally is difficult because it not only involves a 2D partial
differential equation, but the initial density has a �-function
component that results in instabilities with standard numeri-
cal methods. The ISI density of an excitatory leaky integrate-
and-fire spiking neuron was solved using a modified finite
volume method that relied on analytic formulas for the time
steps �34�; however, this is a difficult task for a given
Fokker-Planck equation.

The autocorrelation function of 1, A�t− t��=E�1�t�
=1 �1�t��=1�, could be obtained by solving the same equa-
tion with the same initial density above but with the reset
term ��1� so that probability is conserved �see Peskin �35��.
We then have,

A�t�=
0
1�1+KH�2−1����1,2 , t�d2. This will give the

single-sided autocorrelation function t− t��0; since the pro-
cess is stationary: A�t�=A�−t�. The cross-correlation func-
tion, C�t− t��=E�1�t�=1 �2�t��=1�, is the flux through 1
with the same equation with reset in both 1 and 2, but with
initial density: ��1 ,2 ,0�=��2�ĉ���1 ,1�, where
ĉ= �
0

1���1 ,1�d1�−1, and again �� is the steady-state den-
sity of Eq. �B2�.

APPENDIX C: MORRIS-LECAR EQUATIONS

1. Gap junction coupling

The equations of two Morris-Lecar model of a giant bar-
nacle muscle with noise, coupled via gap junctions consists
of voltage v j�t� and an inactivating variable �potassium, etc.�
wj�t�,

Cv̇1 = Iapp − gl · �v1 − �l� − gkw1�v1��v1 − �k�

− gcam��v1��v1 − �ca� − gp�v1 − v2� + �̃1�1�t� ,

ẇ2 = �
w��v1� − w1�v1�

�w�v1�
,

Cv̇2 = Iapp − gl · �v2 − �l� − gkw2�v2��v2 − �k�

− gcam��v1��v1 − �ca� − gp�v2 − v1� + �̃2�2�t� ,

ẇ2 = �
w��v2� − w2�v2�

�w�v2�
, �C1�

with �� j�t��=0, and �� j�t��i�t��=�ij��t− t��. The auxiliary
functions are

m��v� = 0.5�1 + tanh��v − va�/vb�� ,

w��v� = 0.5�1 + tanh��v − vc�/vd�� ,

�w�v� =
1

cosh��v − vc�/�2vd��
,

The fixed parameter values are: C=20 �F
cm2 , Iapp=40 �A

cm2 ,
gl=2 mS

cm2 , �l=−60 mV, gk=8 mS
cm2 , �k=−84 mV,

gca=4 mS
cm2 , �ca=120 mV, gp=0.01 mS

cm2 . For the auxiliary
functions: va=−1.2 mV, vb=18 mV, vc=12 mV,
vd=17.4 mV, �= 1

15 ms−1.

2. Inhibitory synaptic coupling

With inhibitory synapses, the Morris-Lecar equations are

C
dv1

dt
= Iapp − gl�v1 − �l� − gkw1�v1��v1 − �k�

− gcam��v1��v1 − �ca� − gss1�v2��v1 − �s� + �̃�1�t� ,

dw1

dt
= �

w��v1� − w1�v1�
�w�v1�

,

C
dv2

dt
= Iapp − gl�v2 − �l� − gkw2�v2��v2 − �k�

− gcam��v1��v1 − �ca� − gss2�v1��v2 − �s� + �̃�2�t� ,

dw2

dt
= �

w��v2� − w2�v2�
�w�v2�

,

dsi

dt
= �s

s��v j� − si�v j�
�s�v j�

, i = 1 or 2, and i � j , �C2�

with �� j�t��=0, and �� j�t��i�t��=�ij��t− t��. The auxiliary
functions are

m��v� = 0.5�1 + tanh��v − va�/vb��

w��v� = 0.5�1 + tanh��v − vc�/vd��

s��v� =
�

� + ��1 + e−�v−vt�/vs�
,

�w�v� =
1

cosh��v − vc�/�2vd��
,

�s�v� =
1 + e−�v−vt�/vs

� · �1 + e−�v−vt�/vs� + �
. �C3�

The parameter values in Fig. 6 are: C=20 �F
cm2 , Iapp

=48 �A
cm2 , gl=2 mS

cm2 , �l=−60 mV, gk=8 mS
cm2 , �k=−84 mV,

gca=4 mS
cm2 , �ca=120 mV, �s=−84 mV, �̃=1.632. For the

auxiliary functions: va=−1.2 mV, vb=18 mV, vc=12 mV,
vd=17.4 mV, �= 1

15 ms−1, vt=48 mV, vs=0.05 mV, �=1,
�=2, �s=1 ms−1.
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